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ABSTRACT

or some applications, it is desirable to have an antenna which can

adaptively form antenna pattern ®nulls¥ in the directions of a collection of
interference sources. These nulls are generally required to be below some
specified level of directive gain over the entire system bandwidth. Typically
the nulls are formed by adaptively weighting each output of an N-port antenna,
such as an N-element array. For large arrays operating over wide percentage
bandwidths, some sort of frequency compensation is required at each output
port to accomplish broadband nulling. One technique commonly used is to employ )
a Ptapped? delay line at each element output, with controllable weights |
(frequency independent) at the output of each tap. The objective of this report
is to develop some insight into the way in which delay line compensation leads
to improved performance, to develop some quantitative estimates of how perfor-
mance varies with antenna and delay line parameters, and to develop some tools

useful in the performance evaluation of frequency dependent weighting.

Practical considerations dictate that only a minimum number of taps/
element be utilized. A primary consideration is to minimize the number of taps

required for a specific system performance. With this objective in mind, we

develop an analytic solution characterizing the two element array, employing
a two-tap delay line with each element. This provides valuable insight into
the mechanism of delay line compensation. Results for this gimple case will
then be extended to the N-element planar gg;gghﬁéihéNg tépé/element. That

tap spacing which optimizes the array performance from the viewpoint of

providing wideband nulls on sources incident on the array from locations

‘ . arbitrarily specified over the antenna field of view is developed, and applied
to numerous types of array configurations. The composite performance of nine
specific array configurations is used to estimate the number of taps and tap

1 ‘ spacing which would be required for an arbitrary array configuration, as a

function of the array and delqy line parameters Avm = 27 % sinem, FBW,

) ¢¢g and Nt’ where FBW is the fractional bandwidth (100*FBW = percentage nulling

bandwidth) Gm is the maximum scan angle off broadside, ¢0 the tap spacing

P i1




(in degrees relative to the center-band frequency) D is the maximum aperture
dimension, and Nt the number of taps. The implications of using an Applebaum-
Howells type of adaptive processor to determine the delay-line output weighting,

and the algorithm effects on performance, are also developed.

NS White Sectien
boC Bulf Section )
UNANNOUNCED w] v

JUSTIFICATION ]

L]
' QISTRIBUTION/AVARABLATY CSOES
i Dt AVAIL_and/or SPECAL]

oA

iv




el o -

W mals L gt A A et o, £ 1ok m AR

I.

II.

III.

Iv.

v.

CONTENTS

Abstract
List of Illustrations

INTRODUCTION

PERFORMANCE EVALUATION CONCEPTS

A, The Concept of Orthogonal Interference Sources

B. The Tapped Delay Line and the Applebaum~Howells Processor
C. Optimum Weighting vs Delay Line Synthesized Weighting

THE TWO~ELEMENT ARRAY
A. Eigenvectors and Eigenvalues of R for a Two-Tap Delay Line
B. Interpretation of the Eigenvectors and Eigenvalues
1. Tapped Output Weighted by 51 and &,
2, Tapped Output Weighted by e,
3. Tapped Output Weighted by

4. Simulations

&4

c. Algorithm Dependence/Performance Evaluation
D. Optimize ¢0 for a Predetermined FOV
E. Extensions to Nt > 2

THE N-ELEMENT ARRAY
A. The N-Element Linear Array
B. Triangular Arrays

C. More Complex Arrays

DISCUSSIONS AND CONCLUSIONS

APPENDIX A - An Upper Bound on the Cancellation Achievable Using

Frequency Independent Weighting

APPENDIX B - Eigenvalue and Eigenvector Analysis for the Two-Element

Acknowledgment

References

Array Having Two Taps/Element

iii
vi

14

19
20
25
25
26
27
28
30
35
36

41
43
51
52

71
74

77

e




R

ILLUSTRATIONS

Fig. 1. Cancellation vs 2% .2 sin Om » FBW for an N-element,
equi-spaced linear array using %requency independent weighting.

Fig. 2. Topology oftﬁapped delay line weighting scheme
illustrated for the k— element of an N-element array, and using
and Applebaum-Howells type adaptive processor.

Fig. 3. Synthesis of the optimum weight A (w) using tapped
delay lines: a) Amplitude/Phase plot using two taps/element
b) Three taps/element.

Fig. 4. Delay line topology and notation for the two-element,
two taps/element, delay compensated array.

Fig. 5. Eigenvalue characterization vs tap spacing for the
two-element array using two taps/element. Ay - FBW = 1.9,

Fig. 6. Cancellation (dB) vs tap spacing for the two-element,
two tap array with usMAX and Ay « FBW fixed: a) Ay ° FBW = 1.0
b) Ay ¢ FBW = 4.0,

Fig. 7. Cancellation (dB) vs tap spacing for the two-element,
two tap array with H8yax and Ay + FBW fixed: a) WSyax = 25 dB
b) usMAX = 45 dB.

Fig. 8. Cancellation (dB) vs us for the two~element, two tap
array with Ay « FBW and tap spacing fixed: a) Ay * FBW = 1.0
b) Ay ¢ FBW = 4.0.

Fig. 9. Cancellation (dB) vs angle of arrival for the two-
element array using frequency independent weighting and delay
line weighting with two and three taps per element.

Fig. 10. Cancellation (dB) vs Ay - FBW for the N-elemeBt linear
array using N_ taps per element, where Ay ¢ FBW = 27 + — sin Gm
* FBW. N-1 orthogonal interference sources are equi-spaced beginning
at 0 = 0 .

m

Fig. 11. Three classes of planar arrays for use with delay line
compensation evaluation: a) Equi-Spaced Linear Arrays b) Triangular
Arrays c¢) More complex arrays.

Fig. 12. Geometry and notation for the three-element, equi-spaced
linear array.

vi

10

18

21

29

32

33

34

37

39

42

44




ILLUSTRATIONS (cont'd)

Fig. 13. Optimum weighting vs delay-line synthesized weighting 47
{ for the three-element linear array: a) Optimum weight variation

with frequency b) Delay line synthesized weight variation with

frequency using two taps/element; c) three taps/element.

Fig. 14. Cancellation (dB) vs normalized frequency w for the 50
three element linear array for Ay _ +« FBW = 7 as a function of

the number of taps: a) Cancella?ion in direction of source two;

b) Cancellation in direction of source one.

Fig. 15. Cancellation (dB) vs Ay, + FBW for the four-element 53
triangular array using two different orthogonal, 3-source scenarios,
as a function of the number of taps.

i . T Fig. 16. Cancellation (dB) vs Ay_ « FBW for the seven-element 54
1 simple-triangular array using a sTx-source orthogonal scenario as
a function of the number of taps.

Fig. 17. Cancellation (dB) vs Aym +« FBW for the seven-element 56
rotated double triangular array using a nearly-orthogonal six-source
scenario as a function of the number of taps.

Fig. 18. Optimum weighting vs delay line synthesized weighting 57
for the seven-element simple-double triangular array using Ay _ -

FBW = 3.43: a) Optimum weight variation with frequency b) mDelay

line synthesized weight variation with frequency for Nt = 2 and 3.

for the seven-element rotated triangular array for Aym + FBW = 3.43:
a) Optimum weight variation with frequency; b) Delay line synthe-

sized weight variation with frequency using Nt =2; c¢) Nt = 3.

Fig. 19. Optimum weighting vs delay line synthesized weighting 58 L

Fig. 20. Cancellation (dB) vs Ay_+ FBW for the seven-element 61
hexagonal array using a six-source orthogonal scenario as a function i
of the number of taps.

e e o e - o

b Fig. 21. Optimum weighting vs delay line synthesized weighting for
the seven-element hexagonal array for Ay +« FBW = 2,19: a) Optimum
weight variation with frequency b) Delgy line synthesized weight

. variation with frequency using Nt = 2 and «c) Nt = 3.

Fig. 22. Cancellation (dB) vs Aym « FBW for the five-element square
array using two-different four-source, nearly orthogonal scenarios
as a function of the number of taps.

vii

W e e o wme— e\, -




' ILLUSTRATIONS (comnt'd)

Fig. 23. Cancellation (dB) vs Aym « FBW for the five-element 66
pentagonal array using a four-source, nearly orthogonal
scenario as a function of the number of taps.

Fig. 24. Composite performance of the nine array configurations 67
illustrated in Fig. 11: a) Using frequency independent weighting;

b) Using delay line weighting with two taps/element; c) Using

delay line weighting with three taps/element.

viii




I. INTRODUCTION

For some applications, it is desirable to have an antenna which can adap-
tively form antenna pattern minima, or "nulls" in the direction of a collection
of interference sources. These minima are generally required to be below some
specified level of directive gain over the entire system bandwidth. When this
bandwidth is quite large (for example, when bandspreading is used in the modu-

lation format of a communications signal), the level of nulling which can be

achieved becomes dependent on the aperture size (in wavelengths), the antenna

field of view (FOV), and the RF fractional bandwidth (FBW). Typically, such

nulls are formed by adaptively weighting each of the outputs of an N-port

antenna such as an N-element array, or N-beam multibeam antenna, and then 1
summing these weighted outputs so as to form minima in the radiatiom pattern in

the directions of the interference sources, and relative maxima in the directions

of the desired users of the system. For large antennas operating over wide

percentage bandwidths, some sort of frequency compensation is required at each

antenna output port to accomplish broadband nulling. One technique commonly

used is a frequency dependent weight consisting of a "tapped" delay line with ]

controllable weights (frequency independent) at the output of each tap, and j
the weighted tap outputs summed. The net effect is to adaptively synthesize
the "optimum" frequency-dependent weight at each element. Several papers have
addressed this problem(1’2’3). The objective of this report is to develop some
additional insight into the way in which delay line compensation leads to
improved performance, to develop some quantitative estimates of how performance
varies with the antenna and delay line parameters, and to develop some tools

useful in the performance evaluation of frequency dependent weighting.

Practical considerations dictate that only the minimum number of taps per
element required to achieve the desired performance be utilized. For an N-
element array using Nt taps (Nt=1 corresponds to frequency independent weights

with no delay 1ines), then N-Nt controllable weights are required. A primary

consideration is to minimize Nt required for a specific system performance.

With this goal in mind, it 1is useful to consider the performance characteristics




of an N-element array using frequency independent weighting, so that the need
for incorporating the more complex delay line processor can be quantified.

Fig. 1 illustrates an estimate of the cancellation performance, using frequency
independent weighting, for an N-element linear array for the cases N=2, 7 and
17. Each array case forms N-1 nulls on N-1 interference sources separated
greater than a half-power beamwidth (HPBW) from its neighbor. For our puposes,
the cancellation C plotted in Fig. 1 is defined to be the quotient of the
interference to thermal noise ratio at the array output after nulling to that
before nulling (see Eqs. 38 and 39 of the text), when the interference is
assumed to consist of white noise over the bandwidth BW. The quiescent radia-
tion pattern of the array is assumed to be "earth coverage" (i.e., a single
array element is used as the reference element, where the element pattern
covers the earth FOV with applications pertaining to an uplink to a satellite
at geosynchronous orbit). For convenience we define the fractional bandwidth,
FBW, as Bwlfo, where fO is the operating frequency and BW is the nulling band-
width (in hertz). The development leading up to Fig. 1 is presented in Appen-
dix A. Referring to the figure, it is convenlent to characterize the array
performance according to the variables D/}, sin® and FBW, where D/X denotes
the aperture diameter in wavelengths, and Om is the maximum scan angle defining
the field of view over which the array must operate. The cancellation degrades
rapidly as any of the parameters D/}, Om or FBW is increased. More precisely
Ca (Aym . FBw)z, where AYm =27 - %-- sinOm. If the desired cancellation
performance is specified, Fig. 1 can be used to estimate the corresponding
maximum allowable value of Aym consistent with this performance specification.
If system requirements dictate that a value of Aym greater than this maximum is
required (for example, the minimum allowable user-interference separation
dictates the choice of D/)), frequency dependent weighting requiring Nt >1
must be used. As an example of the use of Fig., 1, if we desire C < -30 dB,
then Aym-FBw must be less than 0,25 if frequency independent weights are used.
For the geosynchronous satellite uplink geometry, Om is fixed at approximately
9°, D/) is determined by the user-interference resolution required. The

tolerable bandwidth with frequency independent weighting is then specified by
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the requirement AYm-FBW <0.25. Results similar to Fig. 1 specifying the
performance of the delay line processor for use with specific array configu-

rations will be presented in Sections III and IV.

Observe from Fig. 1 that the cancellation estimates are relatively inde-
pendent of the number of array elements used. It will be seen later that, in
fact, the estimates of Fig. 1 serve as an upper bound on the cancellation
performance of the more complex planar arrays. However, the general behavior
indicating C o (AYm . FBW)2 remains valid. Only the constant of proportion-~
ality changes with array configuration. It should be pointed out, however,
that this dependence is characteristic only of array antennas. For multiple
beam antennas (MBA's) employing beams formed using time~delayed techniques, it
can be shown that C o FBWZ, and is relatively independent of D/} and Om. This
results from the time-delayed nature of each of the beams. A detailed discus-
sion of the MBA bandwidth behavior is presented in Ref. 4. Because of these
basic differences between the MBA and the array antenna, the results charac-
terizing the array configurations treated in the following sections cannot be

directly extrapolated to the MBA,

In the following section, we will introduce several concepts which are
fundamental to obtaining a quantitative assessment of the performance of
adaptive antennas using a delay line processor. Direct assessment of the band-
with performance of an N-element antenna used in conjunction with an adaptive
processor is difficult unless the array is required to form N-1 independent
nulls. This is because the array possesses N-1 available degrees of freedom,
and forming less than N-1 nulls allows the processor to compensate for any
narrowband tendency inherent in the antenna by using the additional available
degrees of freedom to form wide-band nulls. However, this type of wide-band
null tends to be spatially broader than the corresponding narrowband case, so
that the spatial resolution of the array is compromised. When a tapped delay
1-ne is used to wide~band the array, the narrowband spatial resolution of the
array is preserved. To avoid this ambiguity, and to establish a basis for
comparing array performance with and without a delay line processor, we intro-

duce the concept of "orthogonal" sources. By definition, such sources use up a
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complete degree of freedom per source to be nulled. Subjecting the array to
N-1 orthogonal interference sources necessarily requires all the available N-1
degrees of freedom of the array to be allocated to spatial nulling, with none
remaining for bandwidth compensation. The improvement in performance realized
using delay line processing compared to frequency independent weighting can

then be quantitatively assessed for this type of scenario.

A second useful concept offering insight into how delay line compensation
leads to improved performance is that of "optimum weighting". The set of
optimum weights, by definition, has the precise frequency variation required to
perfectly null all the N-1 orthogonal interference sources over the entire
bandwidth of interest. The frequency dependence of these optimum weights can
readily be determined. The function of the delay line processor is to synthe-
size an effective weight variation with frequency which approximates this
optimum weight variation. The degree to which this is possible depends on the
delay line parameters i.e., the tap spacing and the number of taps. A novel
graphical presentation illustrating this synthesis of the optimum weights via
delay lines will be developed in Section II and used throughout in evaluating

the characteristics of specific antenna configurations.

The performance of an N-element adapative array is strongly dependent on
the control algorithm used in the delay line processor. In Section III we
present an analysis of this dependence assuming that an Applebaum-Howells type

(5)

adaptive feedback processor controls the weights at the output of each tap
of the delay line. For this type of processor, the quiescent radiation pattern
of the array is governed by "beam-steering" controls applied to the control
loops. Upon adaption, the weights are set to a value which reduces the radia-
tion pattern in the direction of the interference sources to a minimum level
dependent on the loop gain (or processor dynamic range), while simultaneously
yielding the best rms approximation to the quiescent radiation pattern in
directions away from the interferemnce. Choice of loop gain (i.e., the effec-
tive power level of the interference sensed by the processor) determines the

tradeoff between depth of null and rms pattern error of the adapted pattern




relative to the quiescent pattern. The dependence of the array performance on 1

processor parameters will be evaluated for the two-element array using two

taps/element. For this simple case, detailed analytical solutions can be

obtained, providing a physical feeling for how delay line compensation improves

the array nulling bandwidth. Proper choice of the steering vector required to
keep the array from "turning itself off" will also be developed. It will be
shown that only in the limit of very large loop gain is the full potential of .

the delay line processor realized.

e

Finally, in Section IV, the performance of specific N-element linear and .

planar arrays operating over a fixed FOV will be quantified as a function of

Aym, the tap spacing, number of taps and the nulling bandwidth for processors j
having very large loop gain. In this limit, array performance becomes indepen-
dent of the control algorithm, and only dependent on the array and delay line
parameters. Of prime interest will be to characterize how the cancellation
over FBW improves as the number of taps increases, so that only the minimum

number of taps might be used for specific system applications. The composite

results determined from numerous array configurations will be used to estimate
a specific value of Nt required to obtain a specified cancellation performance

for an arbitrary array configuration. These results are summarized in

Figs., 24a, b and ¢ of the text.
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II. PERFORMANCE EVALUATION CONCEPTS

A. The Concept of Orthogonal Interference Sources

As discussed in the previous section, it is useful to introduce the con-
cept of orthogonal interference sources. By definition, such sources use up a
complete degree of freedom available to the array per source to be nulled.
Subjecting an N-element array to N~1 orthogonal sources necessarily requires
all the available N-1 degrees of freedom of the array to be allocated to spa-~
tial nulling, with none remaining for bandwidth compensation. Mathematically,

this condition can be sgtated as follows:

Define the source direction vector u, whose components are the outputs
of each element of the array when a narrowband signal of unit amplitude from
direction 0, ¢ is incident on the aperture, according to

+jk0 g sinO(xkcos¢ + yksiné)
(W, =e , k=1, ..., N (1)

where ko = 2n/x = wolc, A is the wavelength, w, the operatiang frequency,

c = 3x108 m/sec, D the diameter of the circle gircumscribing the array, 0, ¢
the -angular coordinates specifying the source direction relative to array
broadside, and the X s Y, are the normalized (relative to D/2) element place-
ment coordinates (xk2 + yk2'< 1). Hence, when gf is applied to the array
elements as a weight vector, then the array output response is maximum. (Note:
"+" denotes "complex conjugate transpose.'") A set of orthogonal sources at

positions u,, u satisfies the orthogonality conditions

3
u,' e u, =N 1,3 =1 N )
o T R W T e
where 61 j denotes the Kronecker delta function (6i j =0, i 43, 61 j = 1,
» 1 »
i = j). Physically this occurs when the sources are sufficiently far apart so H

that a separate null (other than a grating lobe null) is required for each.

At least one set of sources satisfying (2) can be found for most arrays of
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interest, and a set which at least approximately satisfies (2) can be found

for all arrays.

Consider then J narrowband incoherent interference sources emanating from
the directions Oj, ¢j’ j=1, ..., J. The correlation matrix characterizing the

array element voltage outputs, Ek’ is given by

+ +
= * =
R, =E {Ek Eq } Ry G ouju +...+R;G uyu +1 3)

where Ge is the element gain, Rj is the interference power level of the th
source (relative to thermal noise referred to the element input) incident on
the array aperture, E { * } denotes the statistical expected value over the
interference noise processes and 1 is the identity matrix. The N-1 degrees of
freedom of the array are characterized by the N 'eigenvalues, Sys cces Sy of
the N x N matrix §A’ For J sources, J of the N eigenvalues of §A will be
greater than unity, while the remaining N-J will be 1. However, if several of
the interference sources are not orthogonal, i.e., they are in close proximity
(relative to the array half-power beamwidth, HPBW), then not all of the 81»
cevs Sy will be significantly greater than 1. Otherwise said, the array in
this case is not using a single degree of freedom per interference source
present in order to accomplish the nulling. If the sources are orthogonal as
defined in (2), however, all of the 815 ces 8y

fact this condition leads to eigenvalues s, = Rl’ cres 85 = RJ. Equation (2)

defines the conditions for orthogonal sources, and the presence of N~1 such

s, must be significant, and in

sources necessarily uses up all of the available N-1 degrees of freedom of the
array. (We note that if the array element spacing is so large that grating
lobes appear over the FOV, then the number of possible positions for the Ej to
satisfy Eq. (2) is multiplied.)

The concept of orthogonal sources can be quite useful in characterizing
the performance of an array when operating over a wide bandwidth. Consider the
presence of J orthogonal sources operating over a fractional bandwidth FBW.

The correlation matrix for incoherent white noise sources is then given by




i

t t
= +
R, =G, Ry <y u > +...+GC Ry <y 4y > I (4)

where the bracket <+ > denotes the integral

1+F3wﬁ2'
<e> = —— () dw (5)

1-FBW/2

and w = w/wo denotes the normalized frequency. Because of this frequency
average, J sources now lead to the presence of an additional group of eigen-

values s ves S which arise due to bandwidth (see Ref. 6 for a

J+1°* SJ+2° J+L
more detailed discussion of this phenomenon). If FBW is large, the s

’
cer S become significant and forming a wideband null on the source:+ises up
additional array degrees of freedom. This has two possible effects: 1if
J+L < N, then the array will form broadband nulls, but these will also tend to
be spatially broader than narrowband nulls and so will yield reduced antenna

gain to the desired users in close proximity to the interference sources; if

J+L >N, the array cannot null all the sources. Both effects are to be avoided,
i if possible, as they result in non-optimum array performance. The case

J+L < N 1is difficult to evaluate quantitatively, since the resulting loss in

gain to a user signal which is tolerable is dependent on the system link

margin parameters and the locations of the user and interference sources.

However, if we consider the scenario consisting of N-1 equal, orthogonal inter-

ference sources, then sN_1>>-sN and the resultant eigenvalue sN

indicative of the array bandwidth characteristics. Hence direct examination

is directly

of Sy» treated as a function of FBW, offers a measure of the nulling bandwidth

potential of a particular antenna configuration.

B. The Tapped Delay Line and the Applebaum-Howells Processor

Fig. 2 illustrates the general topology of a tapped delay line, employing
Nt taps/element, used in conjunction with an Applebaum-Howells type adaptive

o WEREEEEEEER ST T T RORNCeee T T a TT
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processor. For simplicity only the schematic pertaining to the kEh element
is shown in the figure. We use the following notation: the subscript "k"
denotes the array element under consideration and the subscript "n" the loca-
tion along the delay line. ¢0 denotes the tap spacing in degrees - i.e.,

¢0 = wOT, where T is the time delay between taps. The frequency response

of the k-t'-h array element is denoted as Ek(w) and the frequency response of the
output of the nsh tap in the kEh channel as Ek n(w). Since considerable loss
may be encountered in the power division to th; Nt taps, it is desirable to
amplify before the delay line input. This is indicated in Fig. 2, depicting an
amplifier at the output of each array element having thermal noise noz. As a
consequence of amplifying before the power split, the resultant thermal noise
at the output of each tap in a given channel is correlated, as contrasted to
the more familiar situation, without frequency compensation, in which the
thermal noise is uncorrelated between channels. Because of this noise corre-
lation effect, and because the algorithm chosen is one that tends to minimize
received power, it is poesible for the adaptive array to "turn itself off" if
adequate constraints are not imposed on the weight control algorithm. For the
Applebaum-Howells algorithm, these constraints are imposed via the beam-steering
voltage V, indicated in Fig. 2, which controls the weight in the absence of
interference sources -~ i.e., V specifies the quiescent radiation pattern of
the array. The proper choice of V will be developed in the next sections, and

will be seen to have a substantial effect on the nulling performance.

The outputs of each of the N - Nt terminals of the array define an N - Nt

N - Nt correlation matrix R which governs the performance of the array. Once

[~

is determined, the weights can be set according to the chosen adaptive

algorithm(s).

A=(1+wlt.y 6)
where p is the effective processor gain. u is a variable, dependent on hard-

ware considerations, and significantly affects the processor performance.

Implicit in Eq. (6) is the assumption that N - Nt beam steering voltages

11




characterized by the vector V are applied to each weight at the output of each
tap, and that N - Nt adaptively controllable complex weights are used. To
develop the expression for R, consider the output of the n—t-‘-l tap behind the

kEE element:

o = Ly o EDeG )
Ek w) = —E (W) e 7
o k
\/Nt .
where Ek(w) ig the array element output response. The contribution to Ek n(w)
9
from thermal noise results in a noise covariance matrix given by
2
1 n, -j(n—m)¢ow §

I+ By = S W < ®

The overall correlation matrix R can be written as

-3 (n-m)¢0w
> + gn 9)

5=§:< E { B () B (W) e

For J uncorrelated white-noise interference sources, and for an array antenna

configuration, this expression for R reduces to

R=2 B +R (10)

where

[ SN
[}
[
T ST B9 WP, Xy e a0 a3 seian

1+FBW/2
R, G + (v, =y Iw =J(n-m)d . w
R, toqmm = -2 L f e k3 a3 0" 4, (D
¢

1-FBW/2 -
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k.D
where . j = —g— sinej(xk cosd>j + Yi sian) denotes the center frequency phase
]
shift at the kth element due to the jth source. If R, is normalized relative to

h|
noz, then the resultant expression for R can be written as
J
1 =3 (n-m) ¢w 1
R(k,q,n,m) = 21 By(kqomom) + - & g < @ > (12)
j-

This general expression for R will be used throughout the text to develop the
specific properties of the adaptive array with delay line processing.

A careful examination of the expression for R in Eq. (12) and the adapted

K . solugion for the weights, Eq. (6), will indicate several parameters affecting i
the adaptive array performance. The most obvious are the tap spacing and number
of taps per element. In order to simplify a tradeoff study characterizing the
"optimum” tap spacing, we have assumed a uniform spacing between taps. Clearly

. . for some scenarios, this is a non-optimum choice. For example, for a 3-element

array with two sources incident at specified angles of incidence it can be

shown that non-uniform tap-spacing gives the best performance (see Section IV).

However, it might be argued that a fixed set of delay lines must be designed

to handle arbitrary angles of incidence over the antemna FOV, in which case

some angles of incidence necessaiily yleld better cancellation performance

than others. Thus, optimum performance should be defined relative to, perhaps,

the average cancellation performance over this range of angles. In this case,

J : it would appear that the assumption of uniform spacing between taps is not so

restrictive.

The algorithm defined by Eq. (6) defining the adapted weights is power

level dependent as a consequence of the effective processor gain u. Define

PP

e and 8 to be the eigenvectors and eigenvalues of R, respectively. Then

Eq. (6) can be expregsed in the form
4 o N*N
i
| : A= zt L_etwe
) § - 1+usi -1 A
\ i=1
. '/‘-v ]
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Eq. (13) specifying the adapted weight vector A is similar in form to that for

the more conventional Applebaum-Howells processor without tapped delay lines.

Note that because of the term 1/(1+usi), the eigenvectors corresponding to the

smaller eigenvalues are weighted more heavily, and must contain the information

required to null the interference sources. The detailed characteristics of

these eigenvectors corresponding to the lower eigenvaluas will be developed in

the next section. However, it is clear from Eq. (13) that the relative contri-~ .
bution of the eigenvectors corresponding to the smaller eigenvalues to the

adapted solution for A is dependent on the processor locp gain u; i.e., only

eigenvalues 8, such that us, 21 are sensed by the processor. Define SMAX to
be the maximum eigenvalue of R. Then it can be shown that Syax ~ N Ge Rj for

a single source of relative power level R, incident on the array. Consequently

3

MSyax determines the dynamic range of incident power levels which will be sensed
by the processor. Hence the performance of the delay line processor and the
choice of "optimum" delay line parameters can be expected to be power level
dependent. Only in the limit usMAx2>>1 can we determine optimum delay line

parameters independent of incident power levels.

c. Optimum Weighting vs Delay Line Synthesized Weighting

In order to gain some insight as to how frequency compensation obtained
using tapped delay lines improves the array performance, it is useful to
define what we might refer to as an optimum weight variation with fregquency,
and then examine how the frequency variation of the delay line synthesized

weight compares to this optimum. As illustrated in Fig. 2, Ek(w) denotes

the frequency response transfer function of the kEE antenna port, before delay
line processing. Let us define the OPTIMUM weighting, AOk(w), k=1, ..., N,
such that when AOk(w) is applied as weight to the kEh antenna port output, then
the interference sources are ideally nulled over the entire band defined by

FBW. The output Vo(w) as a function of w is given by

N
Vo) = X Ay () E W) (14)
k=]

14
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Noting Eq. (14), the optimum weights AOk(w) can readily be determined as
follows: define the "narrowband" correlation matrix, gu(w). to be the N x N
matrix at the array element outputs when J incoherent narrowband interference
sources at frequency w are incident on the array, and w is considered a para-
meter over the interval 1 - FBW/2 < w € 1 + FBW/2. Then AOk(w) are given by

Ay ) = [1 + uR (DT - ¥ (15)

where !N is an Nx1 equivalent steering vector. When considered as a function of

W, éo(w) minimizes the array output power over the entire nulling band defined

by FBW. For comparison, consider the delay line synthesized weights obtained
using Nt taps/element for an N-element array. From Fig. 2, the output voltage I
Vo(w) is given by
N
N t

x —J(o-1)¢,w

Vo) = 3 > Ao © E, (W) (16)

k=1 {n=1
The bracketed term in (16) corresponds to the frequency dependent weight

synthesized by the delay line in the lcg-l channel. We define, then,

N

ORI

n=1

+j(n-1)¢0w
an

to be this frequency dependent delay line synthesized weight. Eq. (17) defines
a truncated Fourier series expansion for each weight Ak(w) over the interval

1 - FBW/2< w1+ FBW/2. Ideally, Ak(w) can be made to approximate A0k(w)

as well as desired by choosing oo appropriately and letting Nt be arbitrarily

large. It is well known from the theory of such series expansions that in
order to be able to approximate an arbitrary function over this band, ¢0

< 2n/FBW. Note that 1f we choose %0 = 2n/FBW, then Ak(w) is periodic with
period FBW. Consequently any Fourier sum approximating AOk(w) must exhibit the
familiar Gibb's phenomenon ripple at the ends of the band, and leads to oscil-
lating approximations to AOk(w) within the band. Typically the optimum weights

15




AOk(w) required depend only on the array dimensions (or array environment, if

; multipath arising from boundaries external to the array is present) and are

generally slowly varying relative to 2n/FBW. Consequently it is normally
advantageous to choose ¢0 < 27/FBW. As long as ¢0< 27 /FBW, it is clear from
the theory of Fourier series expansions that the approximation of Ak(k) to
AOk(w) will improve as the number of taps increases. It is the intention of
the following sections to quantify this improvement with the objective of using

only the minimum number of taps for a specified cancellation performance.

To obtain a feel for how well the delay-line synthesized weights defined
: by Eq. (17) approximate the ideal weights, éo(w), consider an N-element+array
and a single interference source incident from an angle 0,). Assume !N =
[1, 0, .%4., 0] corresponding to turning on only a single element (i.e., earth
coverage for an array on a satellite). Choose the array phase reference
relative to Yl; then .

»

A01(w) =1

Jlv =y, )w
R k 1 =
AOk(w) =-57 , k=2, ...N (18)

By comparing Eqs. (17) and (18), several comments concerning the choice of

¢0 can be made:

. 1) Note that using Nt = two taps/element, no choice of ¢0 in Eq. (17)
will yield exact synthesis of (18) unless N=2. 1In this case, for the two

A2,1 =0

results in perfect cancellation over FBW. If the angle of incidence defined

element array, let ¢0 = Yooy < Avy; then the weighting A1 2 = o,
14

by 6,4 1s allowed to be variable over the FOV, perfect cancellation of the
interference waveform will be achieved only for selected angles of incidence

for a fixed ®0.

2) For N-glements, choosing Nt=N will not necessarily yield exact
synthesis of the optimum weights using uniform tap spacing. Conversely, if
a different tap-spacing ¢0k = %M is used for each element, then a total of

16




Nt=N taps are sufficient to perfectly cancel the interference over the band

for selected angles of incidence.

3) Since any angle of incidence over the FOV is assumed equally probable,
it is the average cancellation which can be achieved over this range of angles
which becomes important. In this case, the use of uniform tap-spacing does

not appear to be overly restrictive.

4) Referring to (17) and (18), an interesting graphical aid in visualizing
how the choice of ¢0 affects the synthesis of the optimum weights can be devel-
oped. Consider a polar plot (amplitude/phase) of Eqs. (17) and (18), where
for simplicity we consider only the case of 2 and 3 taps/element. Fig. 3a
illustrates the graphical synthesis of the AOk(w) using 2 taps/element, and
Fig. 3b using 3 taps/element. The optimum weight AOk(w) has a total phase
traversal of (yk—yl) » FBW radians. For Ak,l and Ak,2 # 0, as would generally
be the case for a fixed ¢0, then, at best, the vector sum of the delay line
phasors can only approximate A

Ok
with ¢, = Y,-Y,, becomes clear from Fig. 3a, in which case choosing Ak =0
0 2 1 s1

(w). The two-element, two-tap special case,

results in an exact synthesis of AOk(w)' Fig. 3b for the three tap case
illustrates the added degree of freedom obtained by adding the additional delay
line. In both examples, ¢0 has been chosen too large, and the figures show the
resultant too-rapid phase variation which would be obtained. This phase-
amplitude plot will be used in the later sections to illustrate the performance
of the delay line processor relative to optimum weighting for specific array

antennas.
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Fig. 3. Synthesis of the optimum weight A, (w) using tapped
delay lines: (a) Amplitude/Phase plot using two taps/element,
(b) Three taps/element.
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I11. THE TWO-ELEMENT ARRAY

The two-element array presents the simplest array antenna configuration
which can be used to achieve radiation pattern nulling. Though simple in
concept, a detailed analysis of its performance characteristics provides valu-
able insight into the mechanism of delay line frequency compensation. Prac-
tical considerations dictate that only the minimum number of taps required to
achieve the desired array performance be used. With this goal in mind, the
two-element, two-tap problem will be studied in some detail. For this simple
case, analytical solutions for the delay line synthesized weights can be
obtained together with analytical solutions for the optimum weights. 1In

comparing the two solutions, it will become clear that exact synthesis of the

optimum weights via two taps on a delay line is possible when the tap spacing
ig matched to the wavefront angle of arrival. However, for the practical

case, this angle of arrival is not a priori known, so that this matched tap
spacing could not be used. In practice, a fixed delay line spacing must be
implemented to compensate for an arbitrary angle of arrival. For our purposes,
3 we define an "optimum" delay-line tap spacing relative to this latter crite-
rion. That is, the optimum delay-line tap spacing minimizes the average
cancellation as a function of signal wavefronts incident from anywhere over
the antenna FOV. Solutions for the optimum tap-spacing satisfying this crite-

rion will be obtained for the two-element array for two taps on the delay line,

. and extrapolated to the N-element array employing a delay line with Nt taps
via physical considerations. It is also possible to obtain analytical solu-
tions for the eigenvectors and eigenvalues of the correlation matrix defined
at the tap outputs for the two-element, two~tap array. Knowledge of these
eigenvectors and eigenvalues allows a detailed examination of the adapted
weights to be made on the basis of Eq. (13). In particular, the dependence of
the array cancellation performance on processor dynamic range discussed in the

previous sections can be developed. Finally, by extending the two~tap results

to the more general Nt > 2, a quantitative assessment of the improvement in

cancellation realized by increasing the number of taps can be made.
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In the following, we first develop the characteristics of the eigenvalues
and eigenvectors of R characterizing the performance of the two-element, two-
tap topology, and examine each respective eigenvector in some detail. As
might be expected, the eigenvector &, corresponding to the lowest eigenvalue,
contains the basic information on how to form nulls with delay line compen-
sation. The transition of the adapted weight vector A defined in Eq. (13)

to the optimum weighting defined by e, is then considered as a function of

—4

We show that as Uy ©» A>e, to within a

>> 1, we determine the choice

processor dynamic range, USyaxe
constant factor. Finally, given the case uSMAx

of ¢0 which maximizes the average interference cancellation for sources inci-

dent from anywhere over a fixed FOV.

A. Eigenvectors and Eigenvalues of R for a Two-Tap Delay Line

Consider the two-element, two tap topology illustrated in Fig. 4. For
convenience we define E, =\/5;i;'and Ay= vy, - Y- The solution is simplified
considerably with little loss in generality if we ignore the effects of thermal
noise. For a single interference source incident on the array, the 4 x 4
correlation matrix characterizing the delay line outputs is given by (see Egs.
11 and 12)

+j( Y~ Yq)w | (n-m)¢ow
e >

2
B, = (B;)/2<e . (19)

where we have defined % 1 = Yk and Yﬁ 1 = Yﬁ' If the eigenvectors and eigen-
’ ’

values of 54 can be determined, then using Eq. (13) the complete solution
for the adapted weights, and other physically observable parameters, can be
obtained. An exact analytical solution for these four eigenvalues and eigen-
vectors is difficult. However, they can be estimated quite accurately using a

perturbation expansion of 5& on FBW.

To accomplish this, we expand the integrand of (19) about w=1l. Define

R, according to

0
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Fig. 4. Delay line topology and notation for the two-element,
two taps/element, delay compensated array.
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FBW=0

Then R, can be written in the series expansion

4
R, = Ry + AR, + AR, + AR, = Ry + AR, (21)
2 4 - 6
where A§2 is proportional to FBW , A§4 to FBW , and A§6 to FBW . (Note, odd
powers of FBW are not present since <ow™ = 0 when n 1is odd, where Aw=w-1.)
The eigenvalues and eigenvectors of 54 can bgﬁestimated by the expressions(7)
_ .0 +
5178 Y& B (22a)
- i=1,2,3,4
4
e, = e +Z——-1_ (e+-AR°e ) e (22b)
=1 —,0 s,~8, -j,0 = =i,0" 55,0
. i"i,0
j=1
i
where the 8 0 and e 0’ i=1, ..., 4 are the solutions to the unperturbed
’ s
problem, (i.e., the eigenvectors and eigenvalues of go) and the 5, and e

i=1l, ..., 4 are the estimated eigenvalues and eigenvectors of R. Note by the
form of AR that these estimates are correct to the order of FBW6. The analysis

. leading up to the expression for the s, and e is long and tedious. The

i
procedure is outlined in Appendix B. The eigenvalues take the form

2 2 2, 2
s, = E)° (FBW + 89" (1 + 44 IAYT)Y 24

(23)
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s, > 7.8 x 1074 202 (QOZIA ‘12) (FBW ° Ay)"

2

® g2 e - a0® 0 2P - 6Py 1A+ et in )

8, X 1.6 x 10

and the conjugate transpose of the normalized eigenvectors can be expressed as

+ 1[ +HAY 39, j(¢0+m)]
1, e , € e

[
(]

=1 2

e, = = [(1 *00/8v), (L ~ oy/ay) '8,
2V1 + ¢02/AY2
+36, + (6 +8Y)
(1-¢5/8v)e 7, -(1+dg/av)e
- “J(by-4)  +ie |
e =3 [-e WY1, e 0, - 0] (24)
t 1 ~jAy _ .
e, — [(1 - dg/8ve 7T, (1 + 4g/av), =1+ 64/8Y)
2V1 + % /A Y
-3 (8 v44) +9,
e s =(1 - ¢0/AY)e

Although Eqs. (23) and (24) are approximate, simulations have shown these
expressions to be quite accurate for even the larger values of FBW near unity.

One property of the eigenvalues is worth emphasizing. Since
Trace (R) = Trace (BO) . (25)

and since 8,0 = 8 = 8,0 " 0, then it must follow that

0 30
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10~ 51 + 8y + S, + 8, . (26)

As FBW increases, since %0 is independent of FBW, generally's1 begins to
decrease and 8,55 33 and 34 increase so that (26) is satisfied. Hence since

5, is the smallest, the approximation to s, in (23) 1is the most accurate.

We now show that, as contrasted to the eigenvalues of gA (where EA is the
N x N correlation matrix defined at the antenna output ports), the eigenvalues

of 54 cannot be assoclated directly with output power relative to thermal

noise. To gee this, we note by definition that N
1_ 4
. R .
g | =4 =i
si = e .1_ ’ (27)
2. &

whereas the output power relative to thermal noise, (I/N)i’ when gi+ is applied

as a weight 1is given by

et B &y
am, = =4 : 28)
<A (W) * A(W)>

where A(w) is the delay line synthesized weight defined in Eq. (17). Thus
(I/N)i is given by, using Eq. (8),

e, * R, * e
amy, = 24221 29)
i t, .
E‘i §N Ei

and §N is not a diagonal matrix. Consequently

(I/N)1 =8 T . (30)
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Hence although (I/N)., is proportional to s,, a strict equality does not hold.
i i

Consequently, we interpret the s, relative to output interference/thermal noise

i
ratio in the loose sense indicated by Eq. (30).

B. Interpretation of the Eigenvectors and Eigenvalues

We have seen from Eq. (13) that the adapted weight vector which minimizes
the array output power is comprised of a sum of eigenvectors, suitably weighted.
It is instructive to examine the delay line synthesized weight and resultant
output power when each eigenvector, gi+, i=1, ..., 4, in turn, is used as a
welght vector. The results give some insight into the physical significance

of the eigenvectors.

1. Tapped Output Weighted by & and e,

The first two eigenvalues, s, and 8,, can be interpreted similarly to the

first two eigenvalues of the corr:lacion matrix R, defined at the antenna
element outputs. That is, we note that 8~ 2 EO represents the maximum
output power obtainable from the array. This output results from effective
weights Al(w) and Az(w) which cause the two weighted channels to add in phase
at the output. This results in a radiation pattern having a beam maximum
pointed toward the interference, which is relatively independent of frequency.
s, represents the familiar array dispersion phenomenon, which varies as FBw2
compounded by dispersion introduced by the delay lines. It is zero for zero
bandwidth and increases as the square of the bandwidth. Applying 52+ as a
weight vector in essence puts a "zero~bandwidth" null on the source and
generates a "monopulse" type radiation pattern. Examination of Al(w) and
Az(w) using ng as a weight at the tap outputs shows that Al(w) and Az(w) are
oniy weakly dependent on w. Consequently, weighting characterized by 53+ and
e, represent the most interesting cases relative to broadband nulling.

Furthermore, since s >>8, 8, it is only e, and e, which countributed

1* 82 7783, 3

significantly to the adapted weights. (Unless, of course, ¢0 + 0, in which
case 53+' V and 56+' V -+ 0 in (13); the solution for A then reduces to that of
frequency independent weighting at the array output for which s, characterizes

the adapted array output power. This case is well understood.)
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2, Tapped Output Weighted by e,

Using the expression for 53+ from Eq. (24) in Eq. (17) results in the
delay line synthesized weights Al(w) and Az(w) given by:

=3¢ (w-1)
Al*(w) - % e 8y 70 -1) (31a)

-Jo . (w-1)
Az*(w) - -;- [1-e © ] . (31b)

Equation (31) leads to an output voltage vs. frequency relationship, Vo(w),
given by

V(w) = Al*(w) El(w) + Az*(w) Ez(w)
v,  —30q(w-1) IRACS NI PACS Y (32)
e

-—,}e [e ~ 1] fe - 1.

Hence when 53*

by virtue of the fact that each Ak(w-1)=0, i.e., the array turns off at band

is used as weight vector, the resultant output at w=l is zero

center, as opposed to cancelling the weighted interference between channels.
Thus it would be undesirable to use e, to synthesize the weights since the
user signals as well as the interference signals are nulled. In order to
assure that the adapted solution, Eq. (17) employs e, in the solution as
little as possible, we choose V so that !f' 33-0 which from Eq. (13) prevents

e, from contributing to the adapted weight. This condition will be satisfied

3
if we choose V of the form:

+ * * * j¢o * J¢o
e '}

Va [v1 s Vg sV & T, Y, . (33)

where Vi and v, are arbitrary complex constants. Physically this choice of

V corresponds to a quiescent weighting behind a specific element so that the

! _ ouputs of each tap add in phase in the absence of interference.

ol S it
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For example, congider a wavefront normally incident on the array. Two

possible choices of !T can be used to turn on array element number one, if an

earth coverage quiescent radiation pattern is degired. Ome choice would be:

!T = [1,0,0,0], which ie inconsistent with Eq. (33) above. For this choice of
\'i

+, an allowable adapted weight vector A which results in minimum output power

would be QT = [1,0,-e 0, 0]. This adapted weight turns off the array at band

center (i.e., Al(w=1)=0 and A2(w=1)=0). However, choosing !f of the form !T =
[1,0, + e 0,0] prevents this situation from occurring, since éf can no longer
contain a component of e;- The latter choice of YT assures yf- ey = 0.
Additionally, this choice of V gives maximum output of the delay lines in the
quiescent mode of operation,

When 53+ is applied as a weight, s ggverzs the adapted output power of
the array. Note the dependence 8y = ¢0 AYFBW . As ¢0 + 0, then S4 + 0.
Thus, for ¢0 = 0, the only possible means of obtaining zero output power when
FBW # 0 is for the array to turn itself off by adjusting the output of the
taps (the delay line is only a simple power divider in this limiting case) to

be 180° out of phase with each other.

3. Tapped Output Weighted by e,
Examination of the eigenvalue 8, shows that it goes to zero when ¢O =0
and ¢0 = Ay, independent of FBW. The case sh = 0 when ¢0 = 0 ig similar to

the situation discussed above. It leads to the trivial solution of zero

output power results from turning off the array. The case S, = 0 when ¢0 =
Ay leads to the desired optimum result. That is, applying gaT as weight leads
to the optimum Al(w) and Az(w) synthegized using two taps/element. These are
given by

e-jA Y -j¢0(w-1)]

(@ - ¢O/AY) -1+ ¢O/A'Y)e
2V1 + ¢02/Ay2

Al* (w) =

(34)

* 1 =364 (w-1)
Ay (W) = (a+ ¢0/A vy -@- ¢0/AY)e ]

E ‘ 2V1 + ¢02/A yz
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Comparing Al(w) and Az(w) in Eq. (34) to the optimum AOI(w) and Aoz(w) which
null the interference sources over the entire band yields exact comparison

when ¢0 = |Ay|. Note that since Ay = koD sin O, then the delay line synthe-
sized weighting 18 independent of the sign of ©. Hence when Ay > 0 and ¢0 =

Ay, Eq. (34) reduces to

Al*(w) - _l;_e—jAyw -
V2
(35)
A2 (w) + L

and when Ay < 0 and ¢0 = IAyl, we obtain

-jAy

Al*(w) = e

1
VT
’ (36)

Az*(w) - - _l_ e—jAy e+jAYw
\/2

Substituting either (35) or (36) into Eq. (16) yields perfect cancellation of

the interference sources over the entire band.

4. Simulations

* A The approximations to the 8, and e, defined in Eqs. (23) and (24) have
been verified by computer simulation using the exact solution outlined in
Section II for the N—element-Nt tap topology. Figure 5 illustrates the general
variation of the eigenvalues as ¢0 is varied for parameter Ay*FBW = 1.9.
Increasing Ay+FBW leads to a much more pronounced resonance for the lowest
eigenvalue 8, +Note that when ¢0 = IAy[, the resultant output power = 0,
as 8, = 0 if e, is applied as weights to the tapped delay line outputs. For
¢0 >> |Ay|, 8, @ FBW6 as predicted by Eq. (23).

VA I
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C. Algorithm Dependence/Performance Evaluation

1 According to the above discussion, for a specified positioning of the

interference source it is clear that optimum weighting results if ¢0 = |Ay|

and the eigenvector 34+ is 2pplied as a weight to the tapped delay line outputs.
However, in practice, the position of the interference source is not apriori
known. Furthermore, it is desired that the weights be set autonomously
according to some prescribed algorithm. Both of these factors dictate that

perfect cancellation as governed by e, for ¢0 = IAyl will not generally be
achieved., For our purposes, we have chosen to fix the delay line phase ¢0

9 according to some prescribed value (to be determined later), and set the weights
according to the Applebaum-Howells criterion specified by Eq. (6). Consequently
the adapted weights are proportional to the sum of all the eigenvectors, each

weighted according to 1/(1+usi). Generally s >>52, s, and Sy and we choose

1 3
V according to Eq. (33), so that gaf- V = 0. Then the adapted weights take

the form

-1 t, 1
A_1+usz (e, !)32+1+us[‘ (24 =) & *

7N

The solution governed by Eq. (37) is broadband only when e, domina:es. For
this to be true we require us, >> 1 and ¢g large enough s; that e, " V is not
small (note, from Eqs. (24) and (34), |_e4 . !J « (¢0/Ay) , which approaches
a , zero as ¢0 + 0). In turn, the degree to which us, is much greater than unity
depends on the loop gain u (the value of which is more conveniently specified
in terms of the processor dynamic range, usMAX)’ and on the bandwidth FBW,
Consequently the performance of the delay line processor used in conjunction
with an Applebaum-Howells power inversion algorithm can be expected to be a

function of the variables us R ¢0/Ay and FBW. Since the eigenvalues them-

MAX
selves are a function of FBW by way of the parameter Ay+FBW, this latter 1

parameter offers a more universal characterization of the results.

) The above discussion illustrates that the cancellation C is a function

of the three parameters us /Ay and Ay+*FBW, where C, defined as

uax* %o
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(I/N)a

= 3
c . (38)
is the ratio of the interference to thermal noise before and after nulling the

interference sources. In Eq. (38), (I/N)b and (I/N)a are given by

g Y N
- am, = 4——— (39)

_V_o&N-! é.g'N.A

<

(I/N)b =

It is possible to then evaluate Eq. (38) analytically using Eq. (37) for A.
However, the result is tedious and will not be carried out here. Rather we
illustrate in Figs. 6, 7 and 8 the dependence of C on these parameters as each
is varied for fixed values of the remaining ones. The results were obtained
from computer simulation, and are not dependent on the perturbation expansion

technique.

Figs, 6a and b illustrate the dependence of C as ¢0/AY is varied for

Ay FBW = 1.0 and 4.0, respectively, with us as a parameter. Note that, as

predicted from the behavior of e,s when Ay ° ¥g§ is large, and HSyax >>1, a
pronounced resonance in the dependence of C on ¢0/Ay, indicating broadband
cancellation is achieved. The width of the resonance is dependent on the values
of Ay« FBW, as can be seen by comparing Figs. 6a and b. Note that for Ay + FBW
< 1, the resonance is quite broad, indicating that employing two taps/element
is adequate to give good cancellation over a wide range of interference-
source-locations, with fixed tapped spacing. However, as the aperture disper-
sion increases (either by increasing FBW or %'sin ©), more than two taps/
element would be required to achieve deep, broadband cancellation over a wide

FOv.

Figs. 7 and 8 illustrate the same general behavior as Fig. 6, only
presented using differing values of the three parameters. Fig. 7 illustrates
the dependence of C vs ¢0/AY as the parameter Ay * FBW changes, for a fixed
pover level HSyax? whereas Fig. 8 shows the dependence of C on USMax with
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¢0/AY as a parameter and Ay * FBW fixed. Note from Fig. 8 that a limit exists
where C becomes independent of power level. This limit is a fundamental limit
based on the array and delay-line geometry, on the bandwidth, and on the
interference source location. It could not be improved by use of another
algorithm. In this region, one is in essence applying the eigenvector 54+ as
weights to the tap outputs. Fig. 8 illustrates that if the processor gain u
MAX 2 30-35 dB, then 40 dB cancellation is

possible on these larger sources over a broad range of ¢O/Ay, corresponding

is set so that, for example, us

physically to a wide range of incidence angles. This indicates that, in
general, a set of fixed delay line parameters exist where significant cancel-
lation can be achieved compatible with a wide range of source scenarios.
Optimization of this choice of delay line parameters for differing source

scenarios is the objective of the following section.

D. Optimize ¢0 for a Predetermined FOV

The above results have indicated that if Ay were known (i.e., the inci-
dent angle of arrival), then choosing ¢0 = IAyl yields optimum wideband
cancellation for the two element array, using two taps/element (Ntt> 2 will be
considered in the next section). Generally, however, the interference may be
located anywhere over the antenna FOV and the angle of arrival is not a priori
known. Hence it is of interest to optimize the choice of ¢0 for best average
cancellation over a range of Ay, say -A ym< Ay <Am. Since C is a function

of us as well as Ay « FBW and ¢0/Ay, optimization on ¢0 is generally compli-

MAX

cated. However, in the limit us >>1, then the adapted weight is approxi-

MAX
mately the eigenvector &, In this case, substituting the expression for e,

into Eq. (28), the interference/thermal noise ratio after adaption can be

shown to be

1+ 9,0/
(I/N)a = SA W . (40)
0




|

is
defined in Eq. (23). It is straightforward to average (I/N)a over -Aym< Ay

where we have approximated < éf(w)'é(w) > = §?°A evaluated at w=1, and s,

< Ay_ and maximize this average with respect to ¢,. This result is given by
m 0
6g = 0.7758y . (41)

Hence best average cancellation assuming the interference sources located any-
where in the range -Om< ] <®m results from choosing ¢0 ~ three quarters of
Aym. Note since C is independent of the sign of Ay, only a single delay line
is required to provide cancellation over both positive and negatives values

of ©.

Fig. 9 illustrates the resultant cancellation vs © (expressed in terms of
Ay/Aym) using one and two taps/element as the incidence angle is varied over
the interval —@m< 0 < Om. AY-FBW is fixed at 6.0 and ¢0 is fixed at 0.775
Aym. Only positive values of O are plotted since the results are symmetric
about 9=0. The choice of ¢0 used for two taps/element results in the best
average cancellation over the FOV, Worst case results occur when 0=®m.

Since the optimization criterion leading to ¢0=0.775 AYm was somewhat arbi-
trary, one might consider increasing ¢0 and minimizing the peak cancellation
over -@m< 0 < Om. The resultant ¢0 would be greater than 0.775 @m.

E. Extensions to Nt > 2

Depending on the parameter Aym'FBw and the cancellation required for a
particular system, using only two taps/element might not yield adequate cancel--
lation. 1In this section we briefly consider using multiple taps/element for
the two-element array. It will become clear later that the general trends and
baseline parameters characterizing the two-element array are directly appli~

cable to the N-element array.

Consider, then, the performance of the two element array when Al(w) and
Az(w) are synthesized using Nt taps/element, and assume the tap spacing ¢0
between taps 1s uniform. It is clear from Fig. (3) that increasing Nt leads

to a better approximation of AOk(w) by Ak(w). Of course, if ¢O = IAy|,
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there is no need for Nt'< 2 as the optimim weights are synthesized exactly for
this case. For this reason we fix the delay line spacing ¢, < AYm and vary

© over the FOV as defined above. For Nt=3’ we choose ¢0 = 5(0.775 Ayh) =
0.3875 AYﬁ -~ 1.,e., one half the optimum value of ¢0 for Nt=2. This approxi~
mates a nearly uniform separation in ¢0 when viewed as Ay varies over the
field of view. This choice of ¢, now yields perfect cancellation for two
positive incidence angles: O = 0.775 Gm and © = 0.3875 Om. The cancellation
realized using Nt=3 as O varies over the field of view is illustrated in Fig,
9 for comparison with the case Nt=2 discussed above. Note the marked improve-
ment obtained. This improvement results from the additional freedom to cancel
the interference source exactly at a second positive angle of arrival over the
FOV, which reduces the average cancellation over the FOV considerably.

Because of our choice of ¢o, worst case cancellation again occurs at O=Om.

Of course, by adjusting ¢0 appropriately the dispersion at O=0m can be reduced,

at the cost of degraded performance towards the center of the FOV,

Noting that worst case cancellation for our cholces of ¢O occur when
O=0m, the cancellation obtained for this angle of arrival can be used to
characterize quantitatively the cancellation dependence on the number of taps
as Aym-FBw is wvaried. To this end, Fig. 10 illustrates cancellation as
AYE-FBW is varied using Nt=1’ 2 and 3 and the same choices for @0 as in
Fig. 9 (note, the curves for 3 and 6 elements will be discuesed later). To
obtain the result illustrated for the two element array, the angle of arrival
0=Om and aperture diameter D/A is fixed, and FBW is varied accordingly. The
utility of the parameter 2"'% sin Om-FBw in characterizing the delay line
performance becomes clear from the results shown in the figure. For example,
assume the antenna/delay line processor is to be designed to achieve 30 dB
cancellation for interference sources located anywhere over the FOV. The
system requirements (i.e., signal-interference resolution required, system
bandwidth, etc.) determine the value of Ayh-FBw required to realize a given
performance specification. Clearly if Ayh-FBw <0.25, then frequency indep-
endent weights would suffice to realize the desired cancellation. If 0.25
< A\h'FBw <4, then a delay line using two taps/element should be employed;
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if 4 < Aym- FBW < 9, three taps/element should be used, and so forth. The
results for the three and six element arrays shown in Fig. 10 (to be consid-
ered later) indicate this characterization to be somewhat invariant to the

number of elements.

One final observation can be made concerning the delay line performance
resuzts for N > 2; namely, the cancellation varies as a function of (Axm-
FBW) ~, where K is approximately given by 2(2N —1) Thus for frequency indep- L
endent weights Ce« (Ay . FBw) s for delay lines using two taps/element, C « J
(Ay -FBW) , and so forth for N > 2. This dependence can also be developed {
analytically using a bandwidth expangion for the correlation matrix similar to
that used in Eq. (26). Generally, for N-1 sources, R has N-Nt elgenvalues.

The nulled output of the delay line processor is generally characterized by
the smallest eigenvalue, Sy. N , which it can be shown, for the two-element

2(2N 1)’ leading to the above-mentioned

array varies according to (Ayh FBW)
cancellation dependence. Knowledge of this variation with Ayh' FBW is often
quite useful in scaling a known performance from one aperture size or band-

width to another as a function of the number of taps. i
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IV. THE N-ELEMENT ARRAY

The results of the previous section yield quantitative estimates of the
performance characteristics of a two-element array using either a 1, 2 or 3
tapped delay line for each element. When the number of array elements exceeds
two, it is difficult to obtain analytical results, so that the majority of the
analysis for N > 2 is based on numerical simulations. When N exceeds two, many
configurations for array element positioning become possible, and it is intrac-
table to consider all possibilities. For this reason, we concentrate our
attention on the three classes of planar arrays illustrated in Fig. 11, each
consisting of only a relatively small number of elements. For reasons which
will become clear later, we classify the arrays according to their "angular
dispersiveness", i.e., according to how spread out the N elements are relative
to their angular distribution over a two dimensional planar aperture. For
example, the simplest configuration having the least angular spread for N-
elements distributed over a planar surface would be the equi-spaced linear
array of elements illustrated in Fig., lla. One might view such an array as
consisting of two "radial arms" emanating from a common origin, on which the
elements are positioned. The second configuration, having the next highest
degree of angular spread has three radial arms, equi-spaced 120° in angular
separation, on which the array elements are positioned. This class of arrays,
which we refer to as triangular arrays, is illustrated in Fig. 11b. Finally,
Fig. 1llc illustrates four other array types, each characterized by greater than
3 radial arms emanating from a common origin, where the elements are positioned
at the end-points of these arms. We classify these as "more complex arrays"
relative to the triangular and linear arrays. Carrying through this delinea-
tion to N elements, N >>1, spread out uniformly over an aperture of fixed
diameter, would lead to N radial arms, of varying radii, characterizing the

planar array.

The basic idea behind this categorization of the array types considered is
as follows: Eq. (15) defines the optimum weighting for an arbitrary N-element

array. When the array elements are positioned according to simple geometrical
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Arrays, (c) More complex arrays.
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relationships one would anticipate that the frequency variation of the optimum
weights would be simply related between element outputs. (See, for example,
Eq. (18) specifying AOk(w) for the N-element linear array.) Consequently,
using a set of Nt taps equally spaced along a delay line would yield a better
approximation to this simpler optimum frequency variation (when Nt is con-
strained to be small) than it would for the more complex frequency variation
associated with the more complex arrays. Assuming this ceonjecture to be valid,
one would then require fewer taps per element for an N-element linear array
than for the more complex N-element arrays in order to achieve a desired
cancellation performance. Otherwise said, the number of taps required depends
more on the spatial complexity of the array rather than on the number of ele-
ments in the array. The following results offer support to the validity of
this conjecture, although we can by no means present a definitive proof of its

general applicability.

In the following, we consider first the simplest class of arrays -- the N-
element linear array -- followed by the analysis for the triangular and more

complex arrays.

A. The N-Element Linear Array

1. Three Elements: The three element linear array is an interesting
extension of the two-element array because it allows for the presence of two
interference sources located arbitrarily over the FOV, yet is still simple
enough so that some analytical results can be obtained. One would anticipate
that the amplitude and phase frequency variation of the optimum weights for the
three element array becomes more complex when compared to that for the two-
element array (for which the optimum weights have only phase variation), and
hence a greater degree of synthesis capability is required to approximate this
variation. Indeed, this turns out to be the case, but we shall see that the
cancellation performance of the array still depends only weakly on the number

of elements.

Consider the three-element, equi-spaced array illustrated in Fig. 12, and

the two-source interference scenario defined by incidence angles 01 and 62.
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sin O

k
0™k
In keeping with notation introduced in Section III, define %Y1= "3 1

and *k,z = kogkuZ sin 62, k=1, 2, or 3, where the x, are normalized ~lement
positions (xk < 1). If we choose X = -1, X, = 0 and Xq = 1 for element
locations, then Y?,l and 12’2 reduce to 0, and 11’1 = -15?1, Yﬁ,l = fyé’z.

This simplifies the analysis considerably. It is instructive to determine the
optimum weight variation defined by Eq. (15) for this array, and use it as a
basis for comparison to the tapped delay line synthesized weight. As before,
denote these optimum weights as AOk(w)’ k=1, 2, 3. Then it can be shown that
J ) w

*
A01(w) = A03(w) = —-e

(42)

Aoz(w) =2 cos[ (Y3’2 2 Y3,1) w]

Observe that, as contrasted with the phase only variations of the optimum
weighting for the two-element array, the AOk(w) in (42) have both amplitude

and phase dependence on frequency. In fact, a careful examination of Eq. (42)
reveals that it is not generally possible to synthesize AOk(w) exactly

using a tapped delay line with a finite number of taps having equal tap-spacing.
Consequently, the restriction of equal tap-spacing necessarily yields non-
optimum results for some angles of arrival. However, due to its simplicity

and practical utility, it is still a useful constraint to impose on the delay
line design. Furthermore, it is certainly possible that when the array perfor-
mance is averaged over all possible sets of incidence angles allowable over

the FOV, uniform tap-spacing would still be the desired choice.

Consider now the synthesis of Eq. (42) using either one, two or three
taps per element for the three-element array. Assume two orthogonal inter-
ference sources located over the FOV, with one source positioned at maximum
scan angle Gm. A second orthogonal source will be orthogonal to the first

if it is positioned at 02 satisfying the relationship

45




k.D

~g— (sin ©_ sin 0,) = 2n/3 (43)

For small Gm (as for a satellite at geosynchronous altitude), we have Om - 02
~ 2/3 A/D. For the two sources so positioned, the resultant cancellation as
AYm - BBW is varied (actually, to obtain the numerical results, we fix D/X,

Ol’ 02 and vary FBW) is plotted in Fig. 10, along with the results for the two
element array*. For lack of a better criterion, we have chosen tap-spacing ¢0
according to the optimum spacing developed for the two-element array. This
spacing tends to minimize the average cancellation when considered as a function

of all angles of incidence over the FOV. Thus,

¢0 = ,775 AYm for Nt =2

(44)

¢0 3875 Aym for Nt =3

where Aym = 27 D/X + sin Om. We have also chosen us >>1 s0 as to get

at the fundamental nulling limitation of the array, ?ﬁgependent of the
algorithm implemented in the processor. Notice the close similarity between
performance obtained for the two and three element array configurations as

the number of taps is varied. In Figs. 13a, 13b and 1l3c, we examine the
frequency dependence of the delay line synthesized weights Ak(w) vs the optimum
weights, AOk(w)' of Eq. (42) using Aym « FBW = 7.0. We utilize the polar repre-
sentation of the weights introduced in Section II. Since each weight can be
multiplied by an arbitrary complex function of frequency without changing the

results, the results in Fig. 13 are normalized to Al(w) for each respective

*Note: These results, and all of the following simulations assume an earth

coverage quiescent radiation pattern. Any other steering vector would
increase or decrease the cancellation achieved by approximately the average
quiescent gain to the interference sources relative to earth coverage gain.
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0
In keeping with notation introduced in Section III, define Xkl = 3 sin Gl

and v, = k.Dx. /2 sin 0,, k=1, 2, or 3, where the x, are normalized rlement
k,2 02 k 2

positions (xk < 1). If we choose X = -1, X, = 0 and Xq = 1 for element
locations, then Y?,l and 12,2 reduce to 0, and .ﬁ,l = —73’1, Y2,1 = —73’2.

This simplifies the analysis considerably. It is instructive to determine the
optimum weight variation defined by Eq. (15) for this array, and use it as a
basis for comparison to the tapped delay line synthesized weight. As before,
denote these optimum weights as AOk(w), k=1, 2, 3. Then it can be shown that

N A NREW
* J 2 w
AOl(w) = AOB(W) = -e

(42)

(v - Ya )
= 3’2 3’1
AOZ(W) 2 cos[ 5 w

Observe that, as contrasted with the phase only variations of the optimum
weighting for the two-element array, the AOk(w) in (42) have both amplitude

and phase dependence on frequency. In fact, a careful examination of Eq. (42)
reveals that it is not generally possible to synthesize AOk(w) exactly

using a tapped delay line with a finite number of taps having equal tap-spacing.
Consequently, the restriction of equal tap-spacing necessarily yields non-
optimum results for some angles of arrival. However, due to its simplicity

and practical utility, it is still a useful constraint to impose on the delay

line design. Furthermore, it is certainly possible that when the array perfor-
mance is averaged over all possible sets of incidence angles allowable over !

the FOV, uniform tap-spacing would still be the desired choice.

Consider now the synthesis of Eq. (42) using either one, two or three
taps per element for the three-element array. Assume two orthogonal inter-
ference sources located over the FQV, with one source positioned at maximum
scan angle Om. A second orthogonal source will be orthogonal to the first

if it is positioned at 02 satisfying the relationship

45

7 - P e - . - p
~ - kit
e .




OPTIMUM WEIGHTS

|RA

3 ELEMENT
ARRAY

TWO ORTHOGONAL
SOURCES

DELAY LINE SYNTHESIZED WEIGHTS
USING N, =2,¢,=0.775 Ay,

;h-\ NORMALIZED TO A, (w)
-'O.—
A, (w) —20k
03 201 4 (4B)
werd —30k Ao'(w)=l
-40
-30 -20 -10 O Re
AOZ(") /
® @=> W=}
w=ll
{a)
yim
[¢]
_10—
Ay (w) L
Tr ALtw A ()
w:=18® _30/4\ / 1w
I / ! 1 ! ) AN
-40| =30 -20 -10 0 Re

Fig. 13. Optimum weighting vs delay line synthesized weighting
for the three-element linear array: (a) Optimum weight variation
with frequency, (b) Delay line synthesized weight variation with

frequency using two taps/element.
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¢ ment.
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delay line case, and to AOl(w) for the optimum weight variation. This allows

for comparison on a one-one basis. Note, as obtained from Eq. (42), A01(w)

and Aoz(w) illustrated in Fig. 13a are constant amplitude weights and A03(w)
has a cosine variation with frequency with a peak amplitude of nearly 6 dB.
The value of the AOk(w) at w = 1 is indicated in the figure. Figs. 13b and 13c
illustrate the delay line synthesized approximation to the A0k(w) using 2 and

- 3 taps/element, respectively. At band center, (w = 1}, all the weights compare
closely. As w increases from band center, the delay line synthesized weights
begin to deviate from the optimum weights, although Az(w) and A3(w) have
constant amplitude. The approximation to AOk(w) is worst at the edge of band,
and it is here that the improvement realized in using 3 taps/element over 2
taps/element can be seen. This is particularly true of A3(w) for Nt =2,
where the approximation to A03(w) is very poor at the edge of the nulling

band. For Nt = 3, A3(w) closely approximates A, (w). In order to illustrate

how these deviations in Ak(w) from AOk(w) affec23the cancellation realized as

a function of frequency, we illustrate in Figs. l4a and 14b the cancellation

vs frequency over the nulling band obtained in the direction of each of the

two sources. For Nt = 1, hardly any nulling results, whereas the improvement
in cancellation realized in increasing Nt to either 2 or 3 is quite significant.
Observe the cancellation is worst at the band edges consistent with the devia-
tion of Ak(w) from AOk(w) in these regions. The average cancellation over the
nulling band can be obtained using Fig. 10 for Axm°FBW = 7, from which we
obtain C ~ -20 dB using Nt = 2 and C ~-40 dB using Nt = 3. Clearly these
values are consistent with the cancellation vs frequency results illustrated

in Fig. 14,

2, The Six-Element Linear Array: In order to obtain a feel for the
dependence of the number of taps on the number of elements, consider the
six-element array illustrated in Fig. lla. For this array, five orthogonally
located interference sources can be positioned nearly uniformly over the FOV,
similar to the positioning illustrated shown in the insert of Fig. 1. As

' before, we consider the cases Nt = 1, 2 or 3 using ¢0 = ,775 Axh for Nt =2

- and ¢O = 0.3875 A\h for Nt = 3, The resultant cancellation performance when
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plotted vs Axh-FBw is 1llustrated in Fig. 10, for comparisor with the two and
three element array results. The general similarity of the results for all
these arrays when Nt = 2 and Nt = 3 indicates that the performance achieved

is only weakly dependent on the number of elements. Regions where one, two

or three taps should be used to obtain a desired cancellation performance are
readily identifiable. Note also the general applicability of the cancellation
estimates obtained from the two-element array which predict C = (Ayh-FBW)Z for
Nt =1, C« (Ayh-FBW)6 for Nt =2 and C « (Ayh-FBw)lo for Nt = 3, Hence, we
conclude that for the linear, equi-spaced array the key parameters governing
the array performance are D/\, sin Qm and the fractional bandwidth. To first
order these parameters can be used to estimate the number of taps required in

order to achieve a desired wideband cancellation performance.

B. Triangular Arrays

The triangular arrays illustrated in Fig. 11b represent the simplest
point of departure in considering the transition from linear arrays to planar
arrays. In treating even simple planar arrays, the analysis becomes complicated
due to the necessary inclusion of a two-dimensional FOV. However, the general
concept of orthogonally positioned interference sources and their complete use
of an array degree of freedom remains valid. Consequently, the general phil-
osophy of positioning N-1 orthogonal (or nearly so) sources and examining the
cancellation performance of the array relative to these sources as the nulling
bandwidth increases can still be used to evaluate the array performance. Since
aperture frequency dispersion is worse for sources located toward the edge of
the FOV than for those near the center (see Fig. 1, cancellation without
frequency compensation degrades as (A1h°FBW)2), we consistently position N-1
sources at these locations whenever possible. It should be emphasized, however,
that when D/A is large enough so that grating lobes occur over the FOV, the set
of N-1 orthogonal source locations are not unique and cancellation performance
is dependent on the set of source locations chosen. Consequently, locations
chosen in the following analysis yield results which are only representative
of the bandwidth characteristics of the array, and are not necessarily worst

case.
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With these restrictions in mind, consider the performance of the 4-element
triangular array 1llustrated in Fig. 11b, subjected to three interference
sources orthogonally located over the FOV. The cancellation vs Awﬁ'FBw is
illustrated in Fig. 15 for two different source location scenarios, illustrated
in the insert in the figure, using values of Nt =1, 2 and 3. The performance
of the array vs the two scenarios is somewhat different for each case. However,
even the poorest performance yields significant cancellation over the nulling
band as the number of taps increases. Perhaps most significant is that using
two taps per element yields only about 20-30 dB improvement over frequency
independent weighting, whereas using 3 taps per element results in better than
50 dB (theoretical) improvement over that obtained using frequency independent
weighting. Furthermore, the large cancellation levels realized tend to justify
the choice of ¢0 used, which was extrapolated without justification from the

two-element array analysis.

In order to investigate the dependence of cancellation on the number of
elements, we fix the array symmetry (i.e., 3 radial arms specifying the element
locations) and increase the number of elements from four to seven. The cancel-
lation vs Axm-FBW for this array is illustrated in Fig. 16 for the 6-orthogonal
source scenario indicated in the figure. Clearly, the cancellation realized
as a function of A\h°FBW is not markedly different from that for the four-
element triangular array, again indicating only a weak dependence of the delay
line synthesis of AOk(w) on the number of elements. In fact, recognizing that
the triangular array is comprised of three linear arrays rotated 120°, it
should not be surprising that the results are not markedly different from the
linear array. This supports the conjecture that the number of taps required
in order to achieve very high cancellation levels is most strongly dependent

on the angular dispersiveness of the array, i.e., N_ required is proportional

t
to the number of radial arms characterizing the array.

c. More Complex Arrays

Consider now the class of arrays illustrated in Fig. 1llc, i.e., those

requiring more than three angularly placed radial arms to specify their element
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locations. In order to illustrate the effect of radial element positioning on

the cancellation performance, consider a simple modification to the 7-element

triangular array treated above. If the inmer triad of array elements of the
7-element triangular array of Fig. 1llb is rotated 60°, the "rotated-double
triangle" array illustrated in Fig. 1llc results. This simple rotation of
elements results in an array configuration characterized by 6 equi-spaced
radial arms. The resultant cancellation vs A1h~FBW performance relative to
nulling a six-interference source scenario is illustrated in Fig. 17 using a
one, two or three tapped delay line. The six-source scenario used to evaluate
the array performance is a nearly-mutually orthogonal scenario (8 dB spread
between the first six eigenvalues), chosen because a set of six mutually
orthogonal sources for this array configuration does not appear to exist.
Comparing Fig. 17 to Fig. 16, we conclude that the simple notational change
from three to six radial elements drastically alters the array nulling band-
width performance. This is because the more spatially dispersive the array,
the more difficult it is for a fixed number of taps on a delay line to synthe-
size the optimum weight variation with frequency. To see this, we illustrate
in Figs. 18 and 19 the optimum synthesized tapped delay line weights variation
with frequency for the scenario considered using the simple double triangle
configuration of Fig. 11b and the rotated double triangle configuration of Fig.
llc, respectively, and a value of Awh'FBw = 3.43. For each figure, the polar
plot labeled "a" illustrates the optimum variation with frequency and the plots

labeled "b" or "c" illustrate the tapped delay line synthesized weights using

two and three taps/element, respectively. Note the rather simple amplitude and

‘ phase variation of the optimum weights with frequency for the simple double

1 triangle array, as compared to the rather complex variation obtained for the
rotated double triangle. For the simple double triangle array, the resultant
;_ optimum and synthesized weights lie on the real axis for the scenario chosen.

[ ‘ . Because of this, it is difficult to assess from the polar plot quantitative
differences between the optimum weights and the results for Nt = 2 and Nt = 3,
! i as the data is compressed onto a line. However, a more detailed examination of

this weight frequency variation shows a nearly monotonic variation with
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frequency results for the simple double triangle array, as opposed to that
corresponding to the rotated double triangle, for which some rather abrupt
inflection points occur for the phase variation with frequency. As can be seen
in Figs. 19b and c, using only two or three taps is not sufficient to precisely
synthesize the rapid phase variation of the optimum weights of Fig. 19a,
although the approximation to the optimum weights clearly improves as the
number of taps increases. One might also compare the optimum weight variation
with frequency for these two triangular array configurations to that of Fig. 13
for the three~element linear array, where the smooth behavior of the phase

variation is again evident.

In order to pursue this point further, consider another 7-element array
configuration characterized by six radial arms -- the hexagonal array illus-
trated in Fig. 1llc. Six orthogonal source locations for this array can readily
be determined and are illustrated in the insert of Fig. 20. The cancellation
performance vs the parameter Ayﬁ°FBw is also plotted in this figure for a delay
line employing either one, two or three taps/element. The tap spacing is, as
before, chosen to be ¢0 = ,775 Ayh for Nt = 2 and .3875 AY& for N = 3. We note
the relatively narrowband nulling performance of this array is slightly worse
than for the 7-element rotated double triangle array. As one might anticipate
from the preceding results, the optimum weight variation with freqynaey also
becomes rapidly varying as Ayh-FBW increases. This 1is illustrated/in Fig. 21,
where we plot this weight variation vs frequency for A\h-FBW = 2.19. The
optimum weight variation with frequency is plotted in Fig. 2la, along with the
synthesized weight variation with frequency in Figs. 21b and c, respectively.
Clearly, the same general comments pertaining to the rotated double triangle
relative to Fig. 19 can be made for the hexagonal array. The inflection
points present in the optimum weights phase variation occurs both near band-

center and at the band edges.

For completeness, we briefly consider the two remaining array configura-
tions of Fig., 1llc¢: The square array and the pentagonal array, characterized by

four and five radial arms, respectively. The cancellation performance for
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these two arrays vs Ayh-FBW ig illustrated in Figs. 22 and 23, respectively.
The nearly orthogonal source locations used in the simulation are illustrated
in the insert of each figure. For comparison, we have presented results for
two different orthogonal source scenarios for the 5-element square array, and
included results using 4 taps/element for both arrays. When Nt = 4, we choose
¢0 = AXh/A' The results indicate performance similar to the other array types
of Fig. 1lc. Obgerve that notable improvement ie obtained when 4 taps/element
are used, and the results become comparable to the more simple linear and tri-

\

angular arrays using two delay lines/element.

Finally, in order to bring together the results for all of the array types
in Fig. 11, we examine the composite performance of the arrays obtained using
a fixed number of taps/element. To accomplish this, we illustrate in Fig. 24a
the collective performance of each array type vs Ayh-FBW using frequency
independent weights. Also sketched in the figure is the simple "rule of thumb"
discussed in Section I (Fig. 1) used to assess the need for employing tapped
delay lines. Note this rule of thumb curve serves as a useful upper bound on
the composite set of cancellation results for the general class of arrays
considered. Observe that for all of the array configurations, C « (Aym-FBW)2
-- i.e., for frequency independent weighting, array bandwidth performance
degrades as the square of the parameter 2n-§-s1n Gm-FBW. This is a useful

relationship to keep in mind in assessing array performance.

Fig. 24b illustrates the collective improvement of the 9 array types
considered using Nt = 2, Observe a much larger spread in cancellation perfor-
mance is obtained, indicating the improvement realized is somewhat sensitive to
array configuration. However, the spread is narrow enough to enable one to
estimate useful bounds on the anticipated improvement realized using Nt = 2 as
a function of A\h°FBw. These bounds can be tabulated as a function of the
desired cancellation level for a given number of taps. (Recall, all the above
results were obtained assuming an earth coverage quiescent steering vector,

Any other steering vector would increase or decrease the cancellation achieved
by approximately the average quiescent gain to the interference sources rela-

tive to earth coverage.) The result is 1llustrated in Table I. Fig. 24c
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TABLE 1

COMPOSITE CANCELLATION BOUNDS vs Nt AND X = Aym-FBw FOR THE NINE ARRAY
CONFIGURATIONS OF FIG. 11 ASSUMING AN EARTH COVERAGE QUIESCENT
RADIATION PATTERN

. CANCELLATION (dB) NUMBER OF TAPS BOUND ON Ay,_-FBW
No=1 X <1.75
-20 N, =2 2.5 <X< 7.0
N, =3 5< X< 10
N, =1 X €0.6
-30 Ne =2 1.5 € X < 4.75
. N, =3 3.5< X <5.0
u ' N =1 X < 0.1
t
-40 N, =2 1.2 < X < 3.5
N, =3 2.3< X <3.5
é .
1 = -
| N, =1
. | -50 N, =2 0.75< X <2.2
!
; N, =3 1.5 <X <2.75
BN
|
; i
i
vt i
;, )
byt~ R
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illustrates the composite cancellation performance using Nt = 3, Observe that
those classes of arrays categorized in Fig. 11 yield much different performance

characteristics, offering support to the conjecture relating cancellation

dependence on the number of taps to the spatial distributions of elements over
the aperture. Results for Nt = 3 tabulated in Table 1 use the simulation data
for the more complex arrays, i.e., the upper bound of Fig. 24c, which serves as
a worst case estimate. Although the bounds are somewhat loose, they should
prove useful in estimating a given array performance based on the given D/),

field of view, and operating bandwidth.
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V. DISCUSSIONS AND CONCLUSIONS

The results of Section IV indicate the cancellation performance of various
types of planar arrays. It was determined that the cancellation potential of
a particular array could be considered a function of the parameter Aym-FBw.
Some physical insight into the interpretation of this parameter can be obtained
in a qualitative manner by consideration of the time delays associated with the
delay lines and the array. The maximum delay between the times of arrival of
a plane wave at any pair of elements in an array of diameter D is given by

D sin®
m

™Max T T ¢ (43)

where ¢ is the velocity of 1light. A perfect broadband weight would be capable
of compensating for any time-delay from 0 to TMAX (see Eq. (18)). The choice

of a total delay line length which gives a time delay of 775 1 permits

MAX
one, by appropriate weighting of the taps along the line, to approximate

optimum weighting over this range relative to an arbitrary delay over the

range 0 <1 €1 Simulations have shown the nulling performance to be

MAX®
not too sensitive to the value of total delay line length. For the7?gse of
. T

3 taps, we have somewhat arbitrarily chosen the tap spacing to be MaX

= .3875 TMAX®

would appear to be T

2
For a larger number of taps, however, the appropriate spacing

MAX/Nt’
uniform tap spacing, while somewhat arbitrary, appears reasonable, given a

Nt being the number of taps. The choice of

fixed maximum length for the delay line. Such a uniform distribution of taps
should permit most close approximation to any desired delay between 0 and

TMAX®
The number of taps required to achieve a certain camncellation ratio
depends on TMAX and on the fractional bandwidth. This dependence can be

clarified by introducing the concept of a characteristic time, 1., defined

o’
as the inverse of the actual bandwidth in hertz; i.e.,
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= (46)
or, in terms of the fractional bandwidth FBW,

T A %7

0" ¢ - FBW

The parameter T, may be thought of, for example, as the width of the envelope

0

of an RF pulse, the major frequency components of which lie within the spectrum

BW. It is clear that in order for cancellation of such a pulged waveform
to occur, the pulse must appear simultaneously at the output of taps on more
than one array element. For a two-element array, for example, the number

gf taps along a delay line of total length ThAX must be much greater than

T in order to be able to find such a coincidence of pulses at the array

output for any angle of arrival up to Om.

/

(Using (45) and (47)), the parameter Tt can be expressed as

Max’ To

1
2n —— =A

Y
T9 m

Eq. (48), when interpreted relative to TMAX/TO, offers insight into the
physical significance of the parameter AX@ * FBW used in plotting many of the
curves in the report. For example, if only a single tap is used, it is
reasonable to require TMAX/TO < .1, or Aym + FBW < .63, and the curves in
the report show poor cancellation for Axm « FBW >.63.

Other points that the authors wish to reiterate are that our analysis
always assumes a maximally stressed array, i.e., an N-element array is always
evaluated relative to N-1 orthogonal sources distributed over the FOV., This
assumes that the array dedicates only a single spatial degree of freedom per

source to be nulled.

A different approach to obtaining the capability of nulling N-1 sources
over a wide band might be to use M >> N elements distributed over the same

diameter D, but no tapped delay lines, so that many degrees of freedom could

- N L -

* FBW (48)
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be devoted to wideband nulling of each source. The disadvantage of this
approach is that the nulls obtained are broader in angle,’so that the nulling
resolution is degraded, an effect that does not occur with the tapped delay-
line approach. It also requires the physical deployment of many more elements
than would be necessary with tapped delay lines. The tapped~delay line permits
one to approximate the ideal narrowband weight at each frequency, and thus to
maintain a high-resolution null (consistent with the resolving power of the

antenna aperture) in a desired direction.

We have alsc shown that the number of taps required per array element
depends not only on the parameter A'ml° FBW, but also on the geometry or shape
of the array, more taps being required for more complex shapes. The number
of taps is only weakly dependent on the number of elements that are placed

inside the diameter D.

The analysis has been carried out using the Applebaum-Howells algorithm
to obtain optimum tap weighting, but care has been taken to make the results
of Section IV independent of the particular algorithm used. This has been
done by choosing a large enough value of u, the adaptive processor loop gain,
and by choosing an appropriate quiescent weight vector, one which is guaranteed

not to be orthogonal to the desired nulling weight vector.

In Table I in the last section of the report, we attempted to summarize
the bandwidths achievable for 1, 2 and 3 taps at different cancellation levels.
The table lists a range of values because of the above mentioned effect of
dependence of the results on the ghape of the array. This table can be used

as a preliminary design guide, before more detailed analysis is carried out.
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APPENDIX A

AN UPPER BOUND ON THE CANCELLATION ACHIEVABLE
USING FREQUENCY INDEPENDENT WEIGHTING
In this appendix, we develop the results leading up to Fig. 1 of the text,
which serves as a qualitative estimate of the bandwidth potential of the N-
element array antenna using frequency independent weights. Assume the presence
of N-1 orthogonally located sources, Then Eq. (4) characterizing R can be

expanded in the form

= = v + ... +

B=By+MR=Rj ot - *By1,0% 0 ABy-1 (AL)

where §j 0 denotes the zero-bandwidth correlation matrix of the jth source and
’
Agj the perturbation to Bj 0 due to non-zero bandwidth. The Nth eigenvalue
=Jos
SN is given by
E+050_e— E"‘oﬁécg
sy = Max 7 = Max T (A2)
e e ‘e e e v e

where the maximization in (A2) is performed over all e orthogonal to the N-1

eigenvectors of R Using a simple inequality, it follows that s,, can be

0° N
bounded by
N-1 E+ . MR, - e
8 < Y Max ———iﬁT (A3)
j=1 & e e

where no restriction is imposed on e. Hence the maximum eigenvalue of each

Agj cankbﬁ estimated, and 8y bounded by their sum. Consider A§1 and define

Yk,l = ein@l (xkcos¢1 + yk51n¢l). Then using Eq. (19) of the text, it
follows that
2

Ey 2 e-"(‘ic,l " Yg,1)

. __0 2 _
BB y,q = 725 FBW (%1~ Yq,1) (a4)
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As,, corresponding to the maximum eigenvalue of Agl, can be estimated by a

1
simple bound on the elements of Agl. From Reference 4, it can be shown that
E 2 N N
0 2 mD 2 2 *
bsy < =7 BN (D stne )’ MAX Y X (x - x)" e,
k=1 q=1
(A5)
1 2 N N
<E
0 2 mD 2 2
| 57 PR (O stno)Max B X G - x)
- k=1 q=1
.
' If we assume an N-element, equi-spaced linear array geometry, then the maximum
sum in (A5) can be determined. We obtain
2 _ 2 N(2N-1)
max X 3G - x) = 5T (46)
» k q
Hence
£ 2
0 2 TA . 2 2 N(2N-~1)
Asl< 2% FBW ( X 51n01) 3 N1 (A7)
; Then it follows from (A3) that sy < As1 + ... + AsN—l’ so that
E 2
. 0 1 N(2N-1) . D, 2, 2 2
Sy < 4 6 N1 (2w X FBW) [sin Ol + ... + sin GN-I]
(A8)
! Assume an earth coverage quiescent radiation pattern. The the quiescent
interference-thermal noise ratio is simple (N—l)GeRj if all N-1 interference
| . sources are of equal power level. The adapted interference-thermal noise
’ ! ratio is simply Sy Hence, the cancellation C is given by
B 4 ;
\ C= sN/(N—l)GeRj (A9)
"‘ 'w q
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Using Eq. (A8) in (A9) results in an upper bound on the achievable cancellation:

D 2 2 2 4
(2w N FBW) [sin 01 + .., + sin ON_ll

(A10)

1 N - (2N8-1)

161r2 (N—l)2

C<

where the Oj, j=1,2, ..., N-1, denote the positions of N-1 orthogonally
positioned sources. Although the bound in Eq. (Al0) is not generally tight,
it serves as a worst case estimate of the bandwidth potential of the array.
If the array diameter D/\A is large, so that grating lobes appear over the
antenna FOV, then there are many angles Oj which satisfy;the orthogonality
condition defined by Eq. (2). Since aperture frequency dispersion is worse
for sources positioned toward the edge of the FOV, we can obtain a good
estimate of the worst case cancellation by choosing the Gj's uniformly distri- ;
buted over the FOV, with one at the edge and the others at orthogonally

located positions. 1In this case, Eq. (Al10) can be expressed in the form

2 2
sin 0 sin™ 0
c<—l-—2§—(2—N~'%(2n- %smom- FBW)Z (1 + L+ +—2—1‘l2—]
16n (N-1) sin 0 sin"©
m m
(All)

If no grating lobes occur over the FOV, then the orthogonal positions Ol, ceey
eN—l are uniquely specified; in thig case Eq. (All) will be weakly dependent
on N. Fig., 1 illustrates the bound of Eq. (All) for various values of N when
. the N-1 orthogonal source locations are assumed uniformly distributed over the
FOV. The tightness of the bound in (All) can be seen by comparison with simu-

lations of the nine array configurations summarized in Fig. 24a.
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APPENDIX B

EIGENVALUE AND EIGENVECTOR ANALYSIS FOR THE TWO-ELEMENT ARRAY
HAVING TWO TAPS/ELEMENT

In this Appendix, we outline the perturbation analysis leading up to
Eqs. (23) and (24) characterizing the two-element array having two taps/
element. The 8y and e i=1, ..., 4 defined by Eq. (22) of the text can
be estimated from S 0 and .0 which are the eigenvalues and eigenvectors
9 »
of 50, respectively. However, determining 92’0, 53’0 and 24,0 is complicated

2
by the fact that the eigenvalue of go are degenerate; 1i.e., S1.0 " ZEO and
= ’

s =g =8 = 0. Consequently, the corresponding eigenvectors of these
2,0 3,0 4,0

degenerate eigenvalues are not unique. To circumvent this problem, we elim-
inate the ambiguity in the following manner. Define 21,0’ 8 07 Y30 and 24,0
to be a given orthonormal set of eigenvectors of 50. The desired set of eigen-

vectors {e, .} can be expressed in terms of the u with the relating
-i,0 -i,0

constants evaluated using Eq. (22a) of the text. Clearly, we must have Yo<
9

- + L3 L]
is chosen so that s, = MAX{EQ,O AR 52,0}, vhere e, , is

= 0. Given £2,0° 3,0 and 4,0 a0 be

5,00 22,0 +
normalized to unity and €,0 " 1,0
determined using a similar procedure. Once 239 and &, o are determined, then
9 ?
the Ei can be estimated from Eq. (22b). To this end, the eigenvector 22 0 is
9’

expanded in the form

+k, u

€,0 Y% 0t kyuy gtk

4 4,0 (B1)

and the complex constants k, and k, are chosen so as to maximize the expression

3 4
-I-
e * AR * e
max 20 = 2,0 (82)
k,,k e+ e e
3,4 —2’0 _2’0

Lo determined in this manner then yields directly the estimate s, for the
?
second eigenvalue of R given by Eq. (27a). Once & 0 is determined, &0 and
’ ’
&, 0 can be determined from the linear combination
?




€309y 8 gtdzuyt

(B3)
€,0 28 0% 383 9% Y0

where ¢ Cys c3 and dl, d2, d3 are the complex constants. s c2, c3, dl,

1’

d2 and d, are not independent but must satisfy the orthonormal conditions

+ T
e L]

1.
= = . =0
22,0 " 83,0 " 83,0 " &,0 7 &,0 ° 2,0

(B4)

e.t' e -e." e =+ e
£2,0 " 22,0 " 83,0 © 3,0 " &,0 * 4,0

Eq. (B4) leads to the set of linear constraints

+ ke, K
cg tkyegtk, ¢

L}
o

+ ke d, + K
dy + kydy + Kk, d,

L}
o

(85)

* * *
c,d, +c,d, +¢, d

g dp tegdyte,d =0

This set of equations can be simplified by arbitrarily choosing d2 = 0, so
that 53’0 is dependent only on 23'0 and 34’0 (that this is possible was
determined in retrospect by considering d2 # 0, and 1s due to our choice of

and e

the Ek,o)’ After some manipulation, the expressions (B3) for .0

e
=3,0
can be written in terms of Y4 0’ %30 and %.,0 in the form

e"j ¥2 h| Yz h| Yl (B6)
€ 407 ¢ Y30

V2
2y in %0 (B7)
“ura |18 %0 te Tuy V2 Y,
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where A =\/¢02/A12. Eqs. (B6) and (B7) now form an orthonormal set of eigen-
vectors E}om which 53, 84 can be determined. It remains to choose the basis

set {21 0}. For our choice of basis functions, we choose
4

Yo-© E—[e , € , € e , € e ]
=3
+ e 1 +jAY +j¢0 j¢o _jAY
U o=—5 [1, -e y y —e e ]
T (8)
E; 0 =\/!;[19 0, -e O’ 0]
’ 2
-j¢
+ 1 0
24 0 =\/__[0, 1, 0, -e ]
* 2

Then Eq. (B6) for 53’0

estimate of 8, Although this ie not immediately clear, it can be shown by

used in (27a) yields s, and Eq. (B7) for e gives the
3 4,0

direct maximization of AR of a linear combination e = €30 ° 254,0, where o

is the complex maximization parameter. Having determined e s € ,y €
-1,0* =2,0° =3,0

and 54,0 and S1s Sy 53 and 84, Eq. (27b) can be used to determine e 92,
&, and &, However, due to the choice of 21,0’ 52’0, 23,0 and 54,0’ the sum

84,0 " AR 870

when j # 1, which is valid for all terms of AR up to order FBW . Consequently,

in (22b) is zero since terms i=j are omitted. That is,
we have

81~ 21,0° 82 ~22,0° &3 ~3,0° & ~ 4,0 (89)

where the e are determined as above by substituting (B8) into (B7). The

=i,0
results lead to Eq. (24) of the text.
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